APPLIED MICROBIAL AND CELL PHYSIOLOGY Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera
نویسندگان
چکیده
This study was designed to isolate and characterize endophytic bacteria from halophyte Prosopis strombulifera grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion or stress homeostasis regulation. Isolates obtained from P. strombulifera were compared genotypically by BOX-polymerase chain reaction, grouped according to similarity, and identified by amplification and partial sequences of 16S DNAr. Isolates were grown until exponential growth phase to evaluate the atmospheric nitrogen fixation, phosphate solubilization, siderophores, and phytohormones, such as indole-3-acetic acid, zeatin, gibberellic acid and abscisic acid production, as well as antifungal, protease, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. A total of 29 endophytic strains were grouped into seven according to similarity. All bacteria were able to grow and to produce some phytohormone in chemically defined medium with or without addition of a nitrogen source. Only one was able to produce siderophores, and none of them solubilized phosphate. ACC deaminase activity was positive for six strains. Antifungal and protease activity were confirmed for two of them. In this work, we discuss the possible implications of these bacterial mechanisms on the plant growth promotion or homeostasis regulation in natural conditions.
منابع مشابه
Isolation and Characterization of Hyperthermophilic Nanobacteria from a Hot Spring in Ardabil, Iran
ABSTRACT Background and Objective: Nanobacteria are nanometer-scale particles with different shapes, which have been a subject of debate in modern microbiology. They belong to a proposed class of living organisms, specifically cell-walled microorganisms with a size much smaller than the generally accepted lower limit for life. Since some microorganisms are ...
متن کاملTranscriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638
Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strai...
متن کاملInner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria
One of the most exciting scientific advances in recent decades has been the realization that the diverse and immensely active microbial communities are not only 'passengers' with plants, but instead play an important role in plant growth, development and resistance to biotic and abiotic stresses. A picture is emerging where plant roots act as 'gatekeepers' to screen soil bacteria from the rhizo...
متن کاملEnrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis
UNLABELLED Bacterial endophytes that colonize Populus trees contribute to nutrient acquisition, prime immunity responses, and directly or indirectly increase both above- and below-ground biomasses. Endophytes are embedded within plant material, so physical separation and isolation are difficult tasks. Application of culture-independent methods, such as metagenome or bacterial transcriptome sequ...
متن کاملCharacterization of the Electric Current Generation Potential of the Pseudomonas aeruginosa Using Glucose, Fructose, and Sucrose in Double Chamber Microbial Fuel Cell
Background: Different concentrations of the simple carbon substrates i.e. glucose, fructose, and sucrose were tested to enhance the performance of the mediator-less double chamber microbial fuel cell (MFC). Objectives: The power generation potential of the different electron donors was studied using a mesophilic Fe (III) reducer and non-fermentative bacteria Pseudomonas aeruginosa</em...
متن کامل